Home
Class 12
MATHS
Let omega be a complex number such that ...

Let `omega` be a complex number such that `2omega+1=z` where `z=sqrt(-3)`. If `|(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k`, then k is equal to

A

1

B

`-z`

C

z

D

-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i (sqrt(3))/(2) , then the value of |[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]| is

The value of (1+omega^(2)+2 omega)^(3 n)-(1+omega+2 omega^(2))^(3 n)=

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If x=a+b, y=a omega+b omega^(2), z=a omega^(2)+b omega , then x y z=

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If omega is a complex cube root of unity , then the matrix A = [(1,omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a :

If 1, omega , omega^(2) are the cube roots of unity then (1 + omega) (1 + omega^(2))(1 + omega^(4))(1 + omega^(8)) is equal to