Home
Class 12
MATHS
Without expanding as far as possible, pr...

Without expanding as far as possible, prove that `|{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|`=`(x-y)(y-z)(z-x)(x+y+z)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

Without expanding prove that Delta ={:|( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) |:} =0

Prove that |{:(,x+y+2z,x,y),(,z,y+z+2z,y),(,z,x,z+x+2y):}|=2(x+y+z)^(3) .

The value of |(x+y,y+z,z+x),(x,y,z),(x-y,y-z,z-x)|=

x+y+z=0 Show that x^(3)+y^(2)+z^(3)=3xyz

using properties of determinant prove that {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(2)),( z,z^(2) , 1+pz^(2)) ]:} =( 1+pxyz ) ( x-y) ( y-z ) (z-x) , where p is any scalar .

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

Verify that : x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2] Consider R.H.S