Home
Class 12
MATHS
Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),...

Show that `|{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Prove that abs{:(a^(2) + 1, ab , ac),(ab, b^(2) + 1, bc),(ca, cb, c^(2) +1):}=1 + a^(2) + b^(2) +c^(2)

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

|(a^(2)+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|= 1 + a^2 + b^2 + c^2 .

The determinant |(b^2-ab,b-c,-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals :

If a,b,c, and c, are the roots of x^(2)-4x+3=0,x^(2)-8x+15=0 and x^(2)-6x+5=0, [{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)