Home
Class 12
MATHS
Let "Delta"r=|{:(r,, x,,(n(n+1))/2),( 2r...

Let `"Delta"_r=|{:(r,, x,,(n(n+1))/2),( 2r-1,,y,, n^2),( 3r-2,,z,,(n(3n-1))/2):}|dot` Show that `sum_(r=1)^n"Delta"_r=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=1)^(n)rxxr!

If D_r=|[r,1,(n(n+1))/(2)],[2r-1,4,n^2],[2^(r-1),5,2^(n)-1]| then, sum_(r=1)^n D_r

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

Prove that sum_(r=0)^n 3^r nCundersetr = 4^n .

sum_(r=0)^(m)( n+r )C_(n)=

If D_r= |[2^r-1,2 . 3^(r-1), 4 . 5^(r-1)],[alpha ,beta, gamma],[2^(n-1),3^(n-1),5^(n-1)]| then sum_(r=1)^n D_r=

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

If Delta_r= |[2r-1, mC_r,1],[m^2-1,2^m,m+1],[m^2+m+1,2^m+1,m+2]| , then sum_(r=0)^m Delta_r=

For 2le rlen,{:((n),(r)):}+2({:(n),(r-1):})({:(n),(r-2):})=