Home
Class 12
MATHS
The determinant |{:(a^(2),a^(2)-(b-c)^(2...

The determinant `|{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}|` is divisible by

A

a+b+c

B

(a+b)(b+c)(c+a)

C

`a^(2)+b^(2)+c^(2)`

D

(a-b) (b-c) (c-a)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=

The determinant |(b^2-ab,b-c,-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals :

If a,b,c gt 0 and x,y,z , in R then the determinant : |((a^x+a^(-x))^2,(a^(x)-a^(-x))^2,1),((b^y+a^(-y))^2,(b^(y)-b^(-y))^2,1),((c^z+c^(-z))^2,(c^(z)-c^(-z))^2,1)| is equal to :

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

(a^(2)-b^(2))/(c^(2)-a^(2))=c/b . (sin(A-B))/(sin(C-A))