Home
Class 12
MATHS
Consider the determinant f(x)=|{:(0,x^...

Consider the determinant
`f(x)=|{:(0,x^(2)-a,x^(3)-b),(x^(2)+a,0,x^(2)+c),(x^(4)+b,x-c,0):}|`
Statement -1 f(x) =0 has one root x =0.
Statement -2 The value of skew -symmetric determinant of odd order is always zero.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(x^(3)-x,a+x,b+x),(x-a,x^(2)-x,c+x),(x-b,x-c,0)| then

A root of the equation |(0, x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)|=0 is

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is

Consider f(x)={{:((x^(2))/(|x|)","x!=0),(0","x=0.):}

Let f(x) be defined by f(x) = {{:((|x^(2) - x|)/(x^(2) - x),x ne 0"," 1),(1, x = 0),(-1,x = 1):} Then f(x) is continuous for all :

Statement 1 Roots of x^(2)-2sqrt(3)x-46=0 are rational. Statement 2 Discriminant of x^(2)-2sqrt(3)x-46=0 isa perfect square.

Find the antiderivative of f(x) given by f'(x)=4x^(3)-(3)/(x^(4)) such that f(2)=0 .

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

If one root of x^(2)-x+3 a=0 is double the root of x^(2)-x+a=0 then non-zero value of ' a ' is