Home
Class 12
MATHS
If A,B and C are the angle of a triangle...

If A,B and C are the angle of a triangle show that `|{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then the triangle must be :

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot C/(2)

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

if A, B, C are acute positive angles, then : ((sinA + sinB)(sinA + sinC)(sinA + sinC))/(sinA sinB sinC) is :

If A, B and C are interior angled of a triangle ABC, then show that sin ((B + C ) /( 2 )) = cos "" ( A ) /(2)

If any triangle A B C sin ^(2) A+sin ^(2) B-sin ^(2) C=

If A and B are acute angles such that sin A = cos B , then A +B = _______

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

sin(A-B)=sinA cos B-cosA sinB