Home
Class 12
MATHS
If p ,q ,r are in A.P. then value of det...

If `p ,q ,r` are in A.P. then value of determinant `|[a^2+2^(n+1)+2p, b^2+2^(n+2)+3q, c^2+p], [2^n+p, 2^(n+1)+q, 2q], [a^2+2^n+p, b^2+2^(n+1)+2q, c^2-r]|` is

A

1

B

0

C

`a^(2)+b^(2)+c^(2)-2^(n)`

D

`(a^(2)+b^(2)+c^(2))-2^(n)`q

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If p,q,r are in A.P. and are positive, the roots of the quadratic equation px^(2) + qx + r = 0 are real for :

If cos^(-1) p+ cos^(-1) q + cos^(-1) r =pi , then : p^2+q^2+r^2+ 2pqr is :

If p, q, are real and p ne q then the roots of the equation (p-q) x^(2)+5(p+q) x-2(p-q)=0 are

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and n .

If 3p^2 = 5p+2 and 3q^2 = 5q+2 where p!=q, pq is equal to

If ""^(n) P_(4)=20(""^(n)P_(2)) then find the value of n.

The number of proper divisors of 2^(p)*6^(q)*21^(r),AA p,q,r in N , is

If p and q are positive real number such that p^(2) + q^(2) = 1 , then the maximum value of (p + q) is :

Using the property of determinants prove that {:|( 1,1+p,1+p+q),( 2,3+2p,1+3p+2q),( 3,6+3p,1+6p+3q)|:}=1

If p,q are zeroes of polynomial f(x)= 2x^(2)-7x+3 find the value of p^(2)+q^(2)