Home
Class 12
MATHS
If l(i)^(2)+m(i)^(2)+n(i)^(2)=1, (i=1,2,...

If `l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1`, (i=1,2,3) and `l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3)` and `Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}|` then

A

`|Delta|`=3

B

`|Delta|`=2

C

`|Delta|`=1

D

`|Delta|`=0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

(1+i)^(2 n)+(1-i)^(2 n), n in z is

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

If l^(2) + m^(2) =1 , then the maximum value of l+m is