Home
Class 12
MATHS
Let f(x)=|{:(secx,x^(2),x),(2sinx,x^(3),...

Let f(x)`=|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4))` is equal to

A

0

B

-1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

If f(x)= |{:(x,x^(2),x^(3)),(1,2,3),(0,1,x):}| underset(x to1)limf(x) is equal to

lim_(x rarr 0) ((x)/(tan^(-1) 2x)) is :

Let f(x)=x^(3)-(1)/(x^3) , then f(x)+f((1)/(x)) is equal to :

If f (x) = |{:( sin x , cos x , tan x) , (x^(3) , x^(2) , x) , (2x , 1 , x):}| , then Lt_(x to 0) (f(x))/(x^(2))=

Given f(x) ={{:( ( x)/( |x|)),(2),( xne 0),( x= 0) :} } "find " lim _( xto 0) f(x)

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Let f(x) = {{:(x (sin 1//x + sin (1//x^(2))),,x ne 0),(0,,x = 0):} Then lim_(x rarr oo) f(x) equals :

Let f(x)=|(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x)| Then f'(pi/2)=