Home
Class 12
MATHS
If a, b, c are sides of a triangle and...

If `a, b, c` are sides of a triangle and `|(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=0` then

A

`Delta` ABC is an equilateral triangle

B

`Delta` ABC is a right angled isosceles triangle

C

`Delta` ABC is an isosceles triangle

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

If A, B and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then the triangle must be :

If a^2+b^2+c^2=-2 and f(x)=|(1+a^2x,(1+b^2)x,(1+c^2)x),((1+a^2)x,1+b^2x,(1+c^2)x),((1+a^2)x,(1+b^2)x,1+c^2x)| then f(x) is a polynomial degree :

Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)

The orthocentre of the triangle formed by A(1,2), B(-2,2), C(1,5) is

|(a^(2)+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|= 1 + a^2 + b^2 + c^2 .

If a,b,c gt 0 and x,y,z , in R then the determinant : |((a^x+a^(-x))^2,(a^(x)-a^(-x))^2,1),((b^y+a^(-y))^2,(b^(y)-b^(-y))^2,1),((c^z+c^(-z))^2,(c^(z)-c^(-z))^2,1)| is equal to :

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

a,b,c are the lengths of the sides of a non-degenerate triangle , If k = (a^2 + b^2 + c^2)/(bc + ca + ab) , then