Home
Class 12
MATHS
If the determinant |(cos2x, sin^2x,cos4x...

If the determinant `|(cos2x, sin^2x,cos4x),(sin^2x , cos2x,cos^2x),(cos4x,cos^2x,cos2x)|` is expanded in powers of `sinx` , then the constant term in the expansion is :

A

1

B

0

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x)| Then f'(pi/2)=

cos4x=1-8sin^(2)x cos^(2) x

Let f(x) =cos x sin 2x , then :

Evaluate : int(cos2x+2sin^2x)/(cos^2x)dx

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx =

int (sin^(3)x+cos^(3)x)/(sin^(2)x. Cos^(2)x )dx =

cos 4x=cos 2x

If A=[(cosx,sinx),(-sinx,cosx)] , show that A^(2)=[(cos2x,sin2x),(-sin2x,cos2x)] and A^(1)A=1 .