Home
Class 12
MATHS
The determinant : |(a,b,aalpha+b),(b,c...

The determinant :
`|(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0` if :

A

a,b and c are in AP

B

a,b,c, are in GP

C

a,b, and c are in HP

D

`(x-alpha)` is a factor of `ax^(2)+2bx+c`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the determinant |[a,b,2a alpha+3b],[b,c,2b alpha+3 c],[2a alpha+3b,2b alpha+3c,0]|=0 then

The value of determinant |(a-b ,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

|(a,b,c),(b,c,a),(c,a,b)| =

The value of the determinant {:abs((1,a,b+c),(1,b,c+a),(1 , c,a+b)):} is

If a, b, c are in G.P then the value of the determinant Delta= [[a, b, ax+by],[b ,c ,b x+c y],[a x+b y, b x+c y, 0]] is

The value of determine |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is

Using the factor theorem it is found that b + c , c + a and a + b are three factors of the determine : |(-2a,a+b,a+c),(b+a,-2b,b+c),(c+a,c+b,-2c)| . The other factor in the value of the determine is :

If a gt 0 and discriminant of ax^2+2bx+c is negative, then : Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,0)| is :

|(a - b, b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|=0

If, a,b,c are positive and unequal,show that value of the determinant Delta ={:[( a,b,c),( b,c,a),( c,a,b)]:} is negative