Home
Class 12
MATHS
The value of cos^(2) alpha +cos^(2) be...

The value of
`cos^(2) alpha +cos^(2) beta +cos^(2) gamma ` is _____ .

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the angle made by a vector with the coordinate axes, then sin^(2) alpha + sin^(2) beta + sin^(2) gamma =

If cos alpha, cos beta, cos gamma are the direction cosines fo a vector veca, then cos 2alpha + cos 2beta + cos 2gamma is equal to

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

The value of (sin^(2) 3 A)/(sin^(2) A) - (cos^(2) 3 A)/(cos^(2) A) is equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

Let A and B denote the statement : A : cosalpha + cosbeta + cosgamma = 0 , B : sinalpha + sinbeta + singamma = 0 If cos(beta - gamma) + (gamma - alpha) + cos (alpha - beta) =-3/2 , then :

Prove that if cos alpha ne 1, cos beta ne1 and cos gamma ne 1 , then the vectors a=hati cos alpha+hatj+hatk,b=hati+hatj cos beta+hatk and c=hati+hatj+hatk cos gamma can never be coplanar.

The angle between the lines sin^(2) alpha.y^(2) -2xy.cos^(2) alpha + (cos^(2) alpha -1)x^(2) =0 is

If cos ^(-1) alpha+cos ^(-1) beta+cos ^(-1) gamma=3 pi then alpha(beta+gamma)+beta(gamma+alpha)+gamma(alpha+beta)=