Home
Class 12
MATHS
If a,b,c and d are the roots of the equa...

If a,b,c and d are the roots of the equation
`x^(4)+2x^(3)+4x^(2)+8x+16=0` the value of the determinant `|{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}|` is

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Similar Questions

Explore conceptually related problems

If one of the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1, the other root is

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :

The roots of the equation |(x-1,1,1),(1,x-1,1),(1,1,x-1)| = 0 are

if one of the root of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1,the other root is

If the determinant |{:(x , 1 , 3) , ( 0 , 0 , 1) , (1 , x , 4):}|=0 , then x is equal to

Solve the equation 16xx4^(x+2)-16xx2^(x+1)+1=0 .

If alpha,beta be the roots of the equation 3x^2+2x+1=0, then find value of ((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5

Solve the equation root(3)((2x-1))+root(3)((x-1))=1