Home
Class 12
MATHS
Statement 1: The value of determinant ...

Statement 1: The value of determinant
`|{:(sinpi,cos(x+(pi)/(4)),tan(-(pi)/(4))),(sin(x-(pi)/(4)),-cos((pi)/(2)),ln((x)/(y))),(cot((pi)/(4)+x),ln((y)/(x)),tan(pi)):}|` is zero
Statement 2: The value of skew-symetric determinant of odd order equals zero.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Plot y=sin(x+(pi)/(4)) and y =sin(x-(pi)/(4)) .

cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

If f(x)=((sin^(2)x)/(1+cotx))+(cos^(2)x)/(1+tan) , then f'((pi)/(4)) is :

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)) , then x is

Prove thet sin^(2) (pi//6) + cos^(2) (pi//3)- tan^(2) (pi//4) = (-1)/(2)