Home
Class 12
MATHS
The line whose vector equation are r=2ha...

The line whose vector equation are `r=2hat(i)-3hat(j)+7hat(k)+lambda(2hat(i)+phat(j)+5hat(k)) and r=hat(i)+2hat(j)+3hat(k)+mu(3hat(i)-phat(j)+phat(k))` are perpendicular for all values of `lambda and mu ` if p eqauls to

A

`-1`

B

`2`

C

`5`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
(a, d)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of vectos a = hat(i)- 2hat(j)+hat(k),b=-2hat(i)+4hat(j)+5hat(k) and c=hat(i)-6hat(j)-7hat(k) .

If a hat(i) + 6hat(j) - hat(k) and 7hat(i) -3hat(j) + 17hat(k) are perpendicular vectors, then the value of a= ….

Find the angle between the pair of lines r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))

Find the shortest distance between the lines. r=(hat(i)+2hat(j)+hat(k))+lambda(hat(i)-hat(j)+hat(k)) " and " r=(2hat(i)-hat(j)-hat(k))+mu(2hat(i)+hat(j)+2hat(k)) .

Find the angle between the pair of lines vec(r)=3hat(i)+5hat(j)-hat(k)+lambda(hat(i)+hat(j)+hat(k))" and "vec(r)=7hat(i)+4hat(k)+mu(2hat(i)+2hat(j)+2hat(k))

The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

Find the angle between the following pairs of lines : r=3hat(i)+hat(j)-2hat(k)+lambda(hat(i)-hat(j)-2hat(k)) " and " r=2hat(i)-hat(j)-56hat(k)+mu(3hat(i)-5hat(j)-4hat(k)) .

Find the angle between the following pairs of lines : r=2hat(i)-5hat(j)+hat(k)+lambda(3hat(i)+2hat(j)+6hat(k)) " and " r=7hat(i)-6hat(k)+mu(hat(i)+2hat(j)+2hat(k))

If the vecotrs a hat(i) + hat(j) -2 hat(k) and -12 hat(i) + 4hat(j) + 8 hat(k) are perpendicular then the value of a is equal to

Find the shortest distance between two lines whose vector equations are vec(r) = (hat(i) + 2 hat(j) + 3 hat(k))+lambda(hat(i)- 3hat(j) + 2 hat(k)) and vec(r) = (4 hat(i) + 5 hat(j) + 6 hat(k))+ mu (2 hat(i)+3 hat(j) + hat(k)) .