Home
Class 12
MATHS
A sphere has the equation |r-a|^2+|r-b|^...

A sphere has the equation `|r-a|^2+|r-b|^2=72, where a=hat(i)+3hat(j)-6hat(k) and b=2hat(i)+4hat(j)+2hat(k)`
Find
(i) The centre of sphere
(ii) The radius of sphere
(iii) Perpendicular distance from the centre of the sphere to the plane `rcdot(2hat(i)+2hat(j)-hat(k))+3=0`.

Text Solution

Verified by Experts

The correct Answer is:
`(i) ((3)/(2), (7)/(2), -2), (ii) (sqrt(78))/(2) (iii)5`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the magnitude of the vector vec(a) = 3hat(i) +2hat(j) + 6hat(k) .

If the vectors 2hat(i) + 3hat(j) - 6hat(k) and 4hat(i) - m hat(j) - 12 hat(k) are parallel find m.

If a hat(i) + 6hat(j) - hat(k) and 7hat(i) -3hat(j) + 17hat(k) are perpendicular vectors, then the value of a= ….

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

Find the Cartesian equation of the following planes: r.(hat(i)+hat(j)-hat(k))=0

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

Find the Cartesian equation of the following planes: r.(2hat(i)+3hat(j)-4hat(k))=1