Home
Class 12
MATHS
The transform equation of r^(2)cos^(2)th...

The transform equation of `r^(2)cos^(2)theta = a^(2)cos 2theta` to cartesian form is`(x^(2)+y^(2))x^(2)=a^(2)lambda`, then value of `lambda` is

A

`y^(2)-x^(2)`

B

`x^(2)-y^(2)`

C

xy

D

`x^(2)y^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(2)theta+sin^(2)theta is:

Transform the equation r = 2 a cos theta to cartesian form.

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)

Transform to Cartesian coordinates the equations: r^2=a^2cos2theta

Solve the equation for theta : (cos^(2) theta)/(cot^(2) theta - cos^(2) theta)=3 .

If the line y=3 x+lambda touches the hyperbola 9 x^(2)-5 y^(2)=45, then a value of lambda is

The value of ((11)/(cot^(2)theta)-(11)/(cos^(2)theta)) is :

lim _( theta to x //2) ( cos theta )/( ( pi //2-theta))

If u = sqrt(a^(2) cos^(2)theta + b^(2) sin^(2)theta) + sqrt(a^(2) sin^(2)theta + b^(2) cos^(2)) , then the difference between the maximum and minimum values of u^(2) is given by :