Home
Class 12
MATHS
If the line l x+m y+n=0 touches the para...

If the line `l x+m y+n=0` touches the parabola `y^2=4a x ,` prove that `ln=a m^2`

Text Solution

Verified by Experts

The correct Answer is:
`In=am^2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The line 4 x+6 y+9=0 touches the parabola y^(2)=4 x at the point

The line x+y=k touches the parabola y=x-x^(2) if k=

If the line y=m x+c is a tangent to the parabola y^(2)=4 a(x+a) , then c=

If x+y+1=0 touches the parabola y^(2)=lambda x then lambda=

If the line 2x-3y+6=0 is a tangent to the parabola y^(2)=4ax then a is

The st. line y = 4x + c touches the hyperbola x^2-y^2=1 if .

The line y=2 x+k is a normal to the parabola y^(2)=4 x, then k=

The line y=m x+2 is a tangent to the parabola y^(2)=4 x, then m=

The line x-2 y+4 a=0 is a tangent to the parabola y^(2)=4 a x at