Home
Class 12
MATHS
lim(x rarr 2) (x^6-24 x-16)/(x^3+2x-12)...

`lim_(x rarr 2) (x^6-24 x-16)/(x^3+2x-12)`

Text Solution

Verified by Experts

The correct Answer is:
`=(6(2)^(5)-24)/(3(2)^(2)+2)=168/14=12`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 3)[x] =

lim_(x rarr oo) (2x^(2)-x-1)/(x^(2)+x-2) =

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 4) (x^(3/2)-8)/(x-4) =

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =

lim_(x rarr 1) (x^(18)-1)/(x^(6)-1) =

lim_(x rarr 0) (e^(x)-(1+x))/x^(2) =

lim_(x rarr 0) (2^(x)-1)/((1+x) ^ (1/2) -1) =