Home
Class 12
MATHS
lim(h rarr 0) (sqrt(x+h) - sqrtx)/h =...

`lim_(h rarr 0) (sqrt(x+h) - sqrtx)/h = `

Text Solution

Verified by Experts

The correct Answer is:
`=1/(2sqrt(x))`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

lim_(h rarr 0) (sin sqrt(x+h) -sin sqrtx)/h =

The value of lim_(x rarr 0) (sqrt(a+x)- sqrt(a-x))/x =

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) x/(sqrt(x+4)-2) =

lim_(x rarr 0) (sqrt(2+x^(3)) - sqrt(2-x^(3)))/ x^(3) =

lim_(x rarr 0) (sqrt (1+x^(2)) - sqrt(1-x^(2)))/x =