Home
Class 12
MATHS
If lim(nto oo)1/((sin^(-1)x)^("n")+1)=1,...

If `lim_(nto oo)1/((sin^(-1)x)^("n")+1)=1`,then x lies in the interval

A

`(-sin1,sin1)`

B

`(-1,1)`

C

`(0,1)`

D

`(-1,0)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

If log_(0.3) (x-1) lt log_(0.09) (x-1) , then x lies in the interval :

If log_(0.3)(x-1) < log_(0.09)(x-1) , then x lies in the interval :

lim_(x rarr oo)(1+4/(x-1))^(x+3) =

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n to oo) sum_(r = 1)^(n) 1/n e^(r/n) is :

lim_(x rarr oo)((x)/(1+x))^(x) =