Home
Class 12
MATHS
the value of lim(x->y) (sin^2x-sin^2y)/(...

the value of `lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2)` equals

Text Solution

Verified by Experts

The correct Answer is:
`=(sin 2y)/(2y)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xrarr0)(sin4x)/(sin2x)

The value of lim_(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the line y = x -1 is

The value of lim_(x rarr 2) (e^(3x-6) -1)/(sin(2-x)) is

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :

lim_(x rarr 0) (sin (pi cos^(2)x))/(x^(2)) is equal to :

If (cos^(4)x)/(cos^(2)y)+(sin^(4)x)/(sin^(2)y)=1 , then (cos^(4)y)/(cos^(2)x)+(sin^(4)y)/(sin^(2)y) equal :

y = ( sin x ) /( x^(2))

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(2) + 1/y^(2) equals .

y = sin^(-1)((2x)/(1 + x^2))