Home
Class 12
MATHS
("lim")(hto0)(loge (1+2h)-2loge (1+h))/...

`("lim")_(hto0)(log_e (1+2h)-2log_e (1+h))/(h^2)=`

Text Solution

Verified by Experts

The correct Answer is:
`=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) (l_(n) (1+2h) - 2l_(n) (1+h))/(h^(2)) is :

Evaluate lim_(hto0)(log_(10)(1+h))/h

If l_(1) = (d)/(dx) (e^(sin x)) , l_(2) = lim_(h to 0) (e^(sin ( x+ h)) - e^(sin x))/(h) and l_(3) = int e^(sin x) * cos x dx , then

The value of f(0) for which the function : (log_(e) (1-ax) - log_(3) (1-bx))/(x) is continuous at x = 0 is :

lim_(hto0)(cos^(2)(x+h)-cos^(2)x)/(h) is equal to :

lim _(xto 0) ( 3^(x) -1)/(2x) =(1)/(2) lim _( xto 0) ( 3^(x )-1)/( x) =(1)/(2) log _e 3.

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

lim_(h rarr 0) (tan (a + 2h) - 2 tan (a + h) + tan a)/(h^(2)) is :

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=