Home
Class 12
MATHS
lim(x->1) (log3 3x)^(logx 3)=...

`lim_(x->1) (log_3 3x)^(log_x 3)=`

Text Solution

Verified by Experts

The correct Answer is:
`=e^(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

lim_(x rarr 0) (log (3 + x) - log(3 - x))/(x) = k , the value of k is :

lim_(x rarr 0) (log (1+x))/(3^(x) - 1)=

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

lim_(x rarr 1) (log_(e)x)/(x-1) equals :

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the following equations. (iii) 2.x^(log_(4)3)+3^(log_4x)=27

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=