Home
Class 12
MATHS
lim(x rarr oo) ((x+6)/(x+1))^(x+4) =...

`lim_(x rarr oo) ((x+6)/(x+1))^(x+4) =`

Text Solution

Verified by Experts

The correct Answer is:
`[ "as" x to oo, lim_(xtooo)(x+4)/(x+1)=1]`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)((x)/(1+x))^(x) =

lim_(x rarr oo) ((x+a)/(x+b))^(x+b) =

For x in R, lim_(x rarr oo) ((x - 3)/(x + 2))^(x) is :

lim_(x to oo) ((x + 6)/(x + 1))^(x + 4) , is equal to

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =

For x in R, lim_(x rarr oo) ((x-3)/(x+2))^(x) is equal to :

lim_(x rarr oo)(1+4/(x-1))^(x+3) =

lim_(x rarr oo) (1-2/x)^(x) =

lim_(n rarr oo) 5^(((2x)/(x+3)) =

lim_(x rarr oo) ((x-2)(x+4))/(x(x-9)) =