Home
Class 12
MATHS
The value of lim(xto1)(tan((pi)/4+logx))...

The value of `lim_(xto1)(tan((pi)/4+logx))^(1/(logx))` is equal to

A

`e`

B

`e^(-1)`

C

`e^(2)`

D

`e^(-2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xto0)(cosx+asinbx)^(1/x) is :

The value of Lim_(xto pi)(sqrt(2+cosx)-1)/((pi-x)^(2)) is

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

The value of f(e^(6ogx)-e^(5logx))/(e^(4logx) -e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

lim_(xto0)(e^(x^(2))-cosx)/(x^(2)) , is equal to

int e^(3logx)(x^(4)+1)^(-1)dx is equal to :

Evaluate lim_(xto1)(x^(2)-3x+2)/(x-1)