Home
Class 12
MATHS
Show that underset(xto0)lim(e^(1//x)-1)/...

Show that `underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1)` does not exist.

Text Solution

Verified by Experts

The correct Answer is:
Hence `lim_(xto0)(f(x)` doesn'ts exist.
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to 0)lim ((e^(1//x) -1)/(e^(1//x) + 1)) =

int(e^(2x) -1)/(e^(2x) + 1) dx

underset(x to 0)lim ((1+x)^(1//x) - e)/(x) equals

Evaluate underset(xto0)lim(e^(x^(2))-cosx)/(x^(2))

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

int (e^(x)-1)/(e^(x)+1) dx =

Evaluate underset(xto0)"lim"(1-cos2x)/x^(2)

Prove that underset(xrarr0)lim(sinx/x=1) ?

The value of underset(x rarr 0)(lim) ((e^(x)-1)/(x)) is