Home
Class 12
MATHS
lim(x rarr 1) (sqrt(1 - cos 2 (x - 1)))/...

`lim_(x rarr 1) (sqrt(1 - cos 2 (x - 1)))/(x -1)` :

A

(a) exists and equals to `sqrt2`

B

(b) exists and equals to `-sqrt2`

C

(c) does not exist

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
Hence `lim_(xto1)f(x)` doesn't exist.
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 2) ((sqrt(1-cos {2(x - 2)}))/(x-2)) :

The value of lim_(x rarr 0) (sqrt((1)/(2) (1-cos 2x)))/(x) is :

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :

lim_(x rarr 0) (sqrt(1-cos 2x))/(sqrt(2)x) is :

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (1-cos 4x)/(x2) =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =

lim_(x rarr 2) (sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x-2) is equal to :