Home
Class 12
MATHS
underset(xtooo)lim(cot^(-1)(x^(-a)log(a)...

`underset(xtooo)lim(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(agt1),` is equal to

A

1

B

0

C

`(pi)/2`

D

Doesn't exist

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)})=

Evaluate underset(xto0)lim(log(5+x)-log(5-x))/(x).

If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

underset(x to 0)lim ((1+x)^(1//x) - e)/(x) equals

The value of underset(xtooo)lim(x-x^(2)log_(e)(1+(1)/(x))) is _______.

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=

Evaluate underset(xtooo)lim[sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)].

lim_(x rarr 0) (log (1+x))/(3^(x) - 1)=

lim_(x->1) (log_3 3x)^(log_x 3)=