Home
Class 12
MATHS
Let p=underset(xto0^(+))lim(1+tan^(2)sqr...

Let `p=underset(xto0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x))`. Then `log_(e)p` is equal to

A

2

B

1

C

`1/2`

D

`1/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

underset(x to 0)lim ((1+x)^(1//x) - e)/(x) equals

Evaluate underset(xto0)lim(e^(x^(2))-cosx)/(x^(2))

Evaluate underset(xto0)"lim"(1-cos2x)/x^(2)

underset(x to 0)lim ((e^(1//x) -1)/(e^(1//x) + 1)) =

underset(xtoa)(lim)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x))=

Evaluate underset(xto0)lim(log(5+x)-log(5-x))/(x).

lim_(x rarr 0) x log_(e) (sinx) is equal to