Home
Class 12
MATHS
lim(x rarr 0) (sin (pi cos^(2)x))/(x^(2)...

`lim_(x rarr 0) (sin (pi cos^(2)x))/(x^(2))` is equal to :

A

`(pi)/2`

B

`1`

C

`-pi`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

lim_(x rarr 0) (sin^(2)(x/4))/(x^(2)) =

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

lim_(x rarr 0) (|sin x|)/x is

lim_(x rarr 0) (cos 9x - cos 7x )/(x^(2)) =

lim_(x rarr 0) (sqrt(1-cos 2x))/(sqrt(2)x) is :

lim_(x rarr 0) (sin x^(o) )/x=

lim_(x rarr 0) x^(2). sin (pi/x) is

lim_(x rarr 0) (sin x)/(x (1 + cos x)) is equal to :