Home
Class 12
MATHS
The value of lim(xtoa)(cosx-cosa)/(cotx-...

The value of `lim_(xtoa)(cosx-cosa)/(cotx-cota)` is

A

`-sin^(3)a`

B

`cos^(2)a`

C

`sin^(3)a`

D

`cota`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xrarra)(cosx-cosa)/(sqrtx-sqrta)

The value of lim_(xtoa)(x sin a-a sinx)/(x-a) is

If f(a)=2,f'(a)=1,g(a)=-,g'(a)=2 , then the value of lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is :

The value of lim_(xrarr0)|x|/x is

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xto0)(cosx+asinbx)^(1/x) is :

The value of lim_(x rarr 0) (1-cos(1-cosx))/(x^(4)) is

The value of lim_(x rarr oo) (sinx)/(x) is

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

The value of lim_(theta to 0)(1-cos 4theta)/(1-cos 6 theta) is