Home
Class 12
MATHS
The value of lim(nto oo)(1^(3)+2^(3)+3^(...

The value of `lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))`

A

`1/4`

B

`1/2`

C

`1/(2sqrt(2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

k ne -1 is a constant. The value of lim_(n to oo)(1^k + 2^k + …. + n^k)/(k(n^(k+1))) is

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

lim_(n rarr oo) {(1^(m)+2^(m)+3^(m)+…….+n^(m))/(n^(m+1))} equals

The value of lim_(x rarr oo) (3^(x+1) - 5^(x+1))/(3^(x)-5^(x) is

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt1 is

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

Prove that by using the principle of mathematical induction for all n in N : 1^(3)+ 2^(3)+3^(3)+ ……+n^(3)= ((n(n+1))/(2))^(2)