Home
Class 12
MATHS
If x=e^(-t^(2)), y=tan^(-1)(2t+1), then ...

If `x=e^(-t^(2)), y=tan^(-1)(2t+1)`, then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)(sec x+tan x) then (dy)/(dx) =

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y = tan^(-1)((x+a)/(1-xa)) then (dy)/(dx) =

If y = (1+x^(2)) tan^(-1) x -x , then dy/dx =

y = tan^(-1) (sec x - tan x) , then dy/dx =

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to