Home
Class 12
MATHS
If y=(secx-tanx)/(secx+tanx), then (dy)/...

If `y=(secx-tanx)/(secx+tanx),` then `(dy)/(dx)` equals.

A

`2secx(secx-tanx)`

B

`-2secx(secx-tanx)^(2)`

C

`2secx(secx-tanx)^(2)`

D

`-2secx(secx+tanx)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(2)), then (dy)/(dx) equals

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

If y = tan^(-1) (sec x - tanx) then dy/dx =

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

int(secx)/(secx+tanx)dx=

If y=ce^(x//(x-a)) , then 1/y(dy)/(dx) is equal to :

If f(x) = (1+tanx)/(1-tanx), then f^(')(x) =

If y=x^(x^(x^(. . . . .^(oo)))) , then x(dy)/(dx) equals :

If x^(y) = e^(x-y) then (dy)/(dx) is equal to

If y = sqrt((secx +tanx)/(secx -tan x)) and 0 lt x lt pi/2 , then dy/dx =