Home
Class 12
MATHS
If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy...

If `y=(x^(4)+x^(2)+1)/(x^(2)+x+1)` and `(dy)/(dx)=ax+b`, then find `a and b`.

A

`a=2,b=1`

B

`a=-2,b=1`

C

`a=2,b=-1`

D

`a=-2,b=-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(1+x)(1+x^(2))(1+x^(4)) , then (dy)/(dx) at x=1 is

If y= x^(sin x- cos x)+ (x^(2)-1)/(x^(2)+1)," find "(dy)/(dx) .

If y=(1+x)(1+x^(2))(1+x^(4)) , then (dy)/(dx) at x=1 is :

If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

If y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

If y = (sin^(-1)x)^(x) find (dy)/(dx)

If sin^(2)x + cos^(2) y = 1 find (dy)/(dx) .

If y = f((2x-1)/(x^(2)+1)) and f^(')(x) = sin x^(2) , then dy/dx =