Home
Class 12
MATHS
Let g(x)=log(f(x)), where f(x) is a twic...

Let `g(x)=log(f(x))`, where `f(x)` is a twice differentiable positive function on `(0,oo)`, such that `f(x+1)=xf(x)`.
Then for `N=1,2,3, . . .. . . .. . . g'(N+1/2)-g''((1)/(2))=`

A

`-4{1+(1)/(9)+(1)/(25)+...+(1)/((2N-1)^(2))}`

B

`4{1+(1)/(9)+(1)/(25)+...+(1)/((2N-1)^(2))}`

C

`-4{1+(1)/(9)+(1)/(25)+...+(1)/((2N+1)^(2))}`

D

`4{1+(1)/(9)+(1)/(25)+...+(1)/((2N+1)^(2))}`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)g(x) and g(x) is twice differentiable, then f''(x) is :

f(x) and g(x) are two differentiable functions on [0,2] such that f^('')(x) - g^('')(x) = 0 , f^(')(1) = 4, g^(')(1) =2, f(2) = 9, g(2) =3 , then f(x) - g(x) at x = 3/2 is

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Let f:(-1,1)toR be a differentiable function with f(0)=-1 and f'(0)=1 . Let g(x)=[f(2f(x)+2)]^(2) . Then g'(0)=

If f(x)=(g(x))+(g(-x))/2+2/([h(x)+h(-x)]^(-1)) where g and h are differentiable functions then f'(0)

Let f be twice differentiable function such that f^('')(x) = -f(x) and f^(')(x) = g(x) . Also h(x) = [f(x)]^(2) + [g(x)]^(2). If h(4) = 7, then h(7) =

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :