Home
Class 12
MATHS
If f(x) = log |x|, x ne 0 then f^(')(x) ...

If f(x) = log |x|, `x ne 0` then `f^(')(x)` equals

A

`(1)/(|x|)`

B

`(1)/(x)`

C

`-(1)/(x)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = log (tan x), then f^(')(x) =

If f(x) = log_(a) (log_(a)x) , then f^(')(x) is

If F(x) = int_(x^(2))^(x^(3)) log t dt ,( t gt 0) then F^(')(x) is equal to

If f(x)=log ((1+x)/(1-x)) , then

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x) = x . (sin)1/x, x ne 0 , then the value of the function at x = 0, so that the function is continuous at x = 0 is

Let f : (0, oo ) to R and F(x) = int_0^x f(t) dt . If F(x^2) = x^2(1 + x) , then f(4) equals :