Home
Class 12
MATHS
x=acos^(3)theta,y=asin^(3)theta then fin...

`x=acos^(3)theta,y=asin^(3)theta` then find `(d^(2)y)/(dx^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(3a)sec^(4)thetacosectheta`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=acos^(3)theta and y=asin^(3)theta , then (dy)/(dx)=

If x = asec^(2) theta, y = atan^(2)theta , then (d^(2)y)/(dx^(2))

If x=acos^(3)thetaandy=asin^(3)theta",then "(dy)/(dx)=

If x= a cos^(3) theta, y= a sin^(3) theta , then 1 + ((dy)/(dx))^(2) is______

If x=a sec^(2)theta, y=a tan^(2)theta" then "(d^(2)y)/dx^(2)=

If x = a cos^(3) theta , y = a sin^(3) theta , then 1+((dy)/(dx))^(2) is _______

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .