Home
Class 12
MATHS
If f(x)=ax+b and the equation f(x)=f^(-1...

If f(x)=ax+b and the equation `f(x)=f^(-1)(x)` be satisfied by every real value of x, then

A

a=2, b=-1

B

`a=-1,b in R`

C

`a=1, b in R`

D

a=1, b=-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 1 - 1/x , then f(f(1/x)) =

If f(x)=(a-x^(n))^(1 / n) , then f(f(x)) =

If f(x) = 1+x^4 , then f(x).f((1)/(x))=

If f(x)=be^(ax)+ae^(bx) , then f" (0) =

If f(x) = ax+b and g(x) = cx+d then f(g(x)) = g(f(x)) is equivalent to

If f(x)=(1)/(1-x) then f[f{f(x)}]=

If f(x) = 4x - x^2 , then f (a + 1) - f( a - 1) =

If f(x)= (1)/(1-x) , then f[f{x}]=

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1 f(x) g (x) dx is :

If f(x)= x^(2)+x-1 then the value of f(1) is