Home
Class 12
MATHS
Let f(x) = int2^(x) (dt)/(sqrt(1+t^(4)))...

Let `f(x) = int_2^(x) (dt)/(sqrt(1+t^(4)))`and g be the inverse of f. Then `g^('1)(0) =`

A

1

B

17

C

`sqrt(17)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = int_1^x sqrt(2 - t^2)dt . Then the real roots of the equation x^2 - f' (x) = 0 are :

Let f(x) = int_1^x sqrt(2 - t^2) dt . Then the real roots of the equation x^2 - f(x) = 0 are:

Let f be a real valued function defined on the interval (-1,1) such that e^(-x) f(x) = 2 + int_0^x sqrt(t^4 + 1) dt , for all x in (-1, 0) and let f^(-1) be the inverse function of f. Then (f^(-1))'(2) is equal to :

Let f(x)=int (x^2)/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 ,Then f(1) is :

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let, f(x) = int_0^(x) (cos t)/t dt . Then x = (2n+1) pi/2 , f(x) has

If f(x) = int_1^(x^(2)) tan^(-1) sqrtt dt, t gt 0 , then f^(')(1)=

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

If F(x) = int_3^x (2 + d/(dt) cos t)dt , then F' (pi/6) equals :