Home
Class 12
MATHS
The value of int(0)^(a) log ( cot a + ta...

The value of `int_(0)^(a) log ( cot a + tan x) d x`,
where ` a in (0,pi//2)` is equal to

A

`a log (sin a)`

B

`-a log (sin a)`

C

`-a log (cos a)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1 (8 log (1 + x))/(1 + x^2) dx is:

int_(0)^(pi) log(1 + cos x)dx .

The value of int_(-pi)^(pi) (cos^2 x)/(1 + a^x) dx, a > 0 , is :

The value of int _(-1)^(1) log ((2-x)/(2+x)) d x is equal to

The value of int_(0)^(1)(log(1+x))/(1+x^(2))dx is

If I = int_0^(pi/4) log (1+ tan x) dx , then I =

The value of int_0^(pi/2) (1)/(1+tan^(3)x) dx is

int_0^(pi//2) log(tan x)dx =

The value of int_0^(pi/2) log ((4+3sinx)/(4+3cosx)) dx is