Home
Class 12
MATHS
If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt,...

If `f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt`, then discuss whether even or odd?

Text Solution

Verified by Experts

The correct Answer is:
`phi(-t)=-phi(t),I .e . Phi(t)` is odd function
`phi(x)=int_(0)^(x) log ((1-t)/(1+t)) dt` is an even function.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log ((1+x)/(1-x)) , then

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

The function F(x) = int_0^x log ((1 - x)/(1 + x))dx is :

int_(0)^(pi) log(1 + cos x)dx .

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If g(x) = int_0^x cos 4t dt, then g(x + pi) equals :

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =

If g(x) = int_0^x cos^4 t dt , then g(x + pi) equals: