Home
Class 12
MATHS
Prove that int(0)^(25)e^(x-[x])dx=25(e-1...

Prove that `int_(0)^(25)e^(x-[x])dx=25(e-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`=25(e-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(4)^(5) e^(x) dx .

int_0^(oo) x e^(-x) dx=

int_(-4)^(1) e^(x) dx .

int_0^(1) x^(2).e^(x) dx =

Prove that 1 le int_(0)^(1) e^(x^(2))dxle e

Prove the following int_(0)^(1)xe^(x)dx=1

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (e) int_(0)^(2)xsqrt(2 - x) dx .

int_(-1)^(1) (x+1)e^(x)dx

int (x+1)^(2)e^(x)dx =