Home
Class 12
MATHS
int(0)^(a+b)(f(x-a))/(f(x-a)+f(b-x))dx, ...

`int_(0)^(a+b)(f(x-a))/(f(x-a)+f(b-x))dx`, is equal to

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a+c)^(b+c) f(x) dx is equal to :

int (f^(')(x))/(f(x) log [f(x)]) dx =

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .

int (d[f^(2)(x)])/(f(x)+f^2(x)=

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

int_0^(pi) x f (sin x) dx is equal to :