Home
Class 12
MATHS
If int0^x f(t) dt = x + intx^l tf (t) dt...

If `int_0^x f(t) dt = x + int_x^l tf (t) dt`, then the value of `f(1)` is :

A

`(1)/(2)`

B

0

C

1

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =

If int_(sin x)^(1) t^2 f(t) dt = 1 - sin x , then the value of f(1/(sqrt3)) is :

If phi (x) = cos x - int_0^(x) (x-t) phi (t) dt , then the value of phi^('')(x) + phi (x) =

If f(x) be a continous function for all real values of x and satisfies int_3^(x) f(t) dt = x^(2)/2 + int_x^(8) t^(2) f(t) dt then int_(-1/2)^(1) f(x) dx =

Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x in R f(x + T) = f(x) . If I = int_6^T f(x) dx , then the value of int_(3)^(3 + 3T) f(2x)dx is:

If int_a^(x) f(t) dt - int_0^(y) g(t) dt = b then dy/dx at (x_(0),y_(0)) is

Let 'f' be a non-negative function defined on the interval [0,1]. If int_0^x sqrt(1 - (f'(t))^(2)) dt = int_0^x f(t) dt, 0 le x le 1 and f(0) = 0, then :