Home
Class 12
MATHS
The point of extremum of the function ph...

The point of extremum of the function `phi (x) = int_1^(x) e^(t^(2)/2) (1-t^(2)) dt` are

A

`x=1,-1`

B

`x=-1,2`

C

`x=2,1`

D

`x=-2,1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int (1+t^(2))/(1+t^(4))dt =

The function L(x) = int_1^x (dt)/t satisfies the equation:

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

The solution for x of the equation : int_(sqrt2)^(x) (dt)/(tsqrt(t^2 - 1)) = pi/2 is :

int_(1)^(2)(1/x - 1/(2x^2))e^(2x) dx .