Home
Class 12
MATHS
Let 'f' be a non-negative function defin...

Let 'f' be a non-negative function defined on the interval [0,1].
If `int_0^x sqrt(1 - (f'(t))^(2)) dt = int_0^x f(t) dt, 0 le x le 1` and f(0) = 0, then :

A

`f((1)/(2)) lt(1)/(2) and f((1)/(3)) gt (1)/(3)`

B

`f((1)/(2)) gt (1)/(2) and f((1)/(3)) gt (1)/(3)`

C

`f((1)/(2)) lt (1)/(2) and f((1)/(3)) lt (1)/(3)`

D

`f((1)/(2)) gt (1)/(2) and f((1)/(3)) lt (1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function defined on the interval (-1,1) such that e^(-x) f(x) = 2 + int_0^x sqrt(t^4 + 1) dt , for all x in (-1, 0) and let f^(-1) be the inverse function of f. Then (f^(-1))'(2) is equal to :

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

If int_a^(x) f(t) dt - int_0^(y) g(t) dt = b then dy/dx at (x_(0),y_(0)) is

Let f(x) = int_1^x sqrt(2 - t^2) dt . Then the real roots of the equation x^2 - f(x) = 0 are:

Let, f(x) = int_0^(x) (cos t)/t dt . Then x = (2n+1) pi/2 , f(x) has

Let f(x) = int_1^x sqrt(2 - t^2)dt . Then the real roots of the equation x^2 - f' (x) = 0 are :

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is